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Correlated Quantum Materials

Strong electron-electron correlations 
– Kinetic energy !  Coulomb repulsion 

– Electrons behave collectively and produce nearly degenerate 
emergent phases and excitations 

– Magnetism, charge order, nematic states, superconductivity, … in metals 

– Spin liquid behavior, fractionalized excitations, Majorana fermions, … in 
geometrically frustrated spin systems  

Model description 
– Accuracy needed to describe effects of correlations and phase  

competition requires use of reduced model  
Hamiltonians and advanced quantum  
many body methods, in conjunction  
with high-performance computing

≈
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α-RuCl3 is a leading candidate material for the observation of physics related to the Kitaev quantum spin
liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements,
we demonstrate that α-RuCl3 undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T
applied in the ab plane. We show further that this high-field QSL phase has gapless spin excitations over a
field range up to 16 T. This highly unconventional result, unknown in either Heisenberg or Kitaev magnets,
offers insight essential to establishing the physics of α-RuCl3.
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The quantum spin liquid (QSL) is an exotic state of
matter with long-range coherence but with no spontaneous
breaking of translational or spin-rotational symmetry
down to zero temperature [1]. Such a state in two or higher
dimensions has implications for phenomena ranging from
high-temperature superconductivity [2] to quantum com-
putation [3,4]. QSLs have long been sought in systems with
strong geometric frustration [5–8], where magnetic order is
destroyed by quantum fluctuations in a highly degenerate
ground manifold. A more recent avenue to QSL formation
is by competing interactions with combined spin and
spatial anisotropies, as in the Kitaev model, where both
gapped and gapless QSLs are realized exactly in a
honeycomb-lattice spin-1=2 system [9].
A pure Kitaev Hamiltonian is hard to achieve in real

materials. However, the compounds A2IrO3 (A ¼ Na, Li)
[10–15] and α-RuCl3 [16–22] are candidate systems for
significant Kitaev-type interactions. In each case, the 4d
(Ru3þ) or 5d (Ir4þ) ions form a Mott insulator on a
honeycomb lattice, whose localized electrons have an
effective spin jeff ¼ 1=2 due to strong spin-orbit coupling
[10,23–26]. In α-RuCl3 at zero field, a finite-energy
continuum of magnetic excitations [27] is suggestive of
fractionalized (spinon or Majorana-fermion) excitations
[9,28–32]. However, the ground states in all cases have
“zigzag” magnetic order [33–38], indicating the presence
of significant non-Kitaev terms, whose exact nature con-
tinues to occupy many authors [39–48]. While the large TN
in Na2IrO3 [33,34] suggests subdominant Kitaev terms, the
relatively low TN of α-RuCl3 has sparked an intensive
search for experimental [49–51] and theoretical [52,53]
evidence for “proximate Kitaev” behavior.

Here we report a nuclear-magnetic-resonance (NMR)
investigation of high-quality single crystals of α-RuCl3.
With additional magnetic susceptibility and specific-heat
measurements, we establish the phase diagram of Fig. 1.
We demonstrate the presence of a field-induced QSL
beyond the quantum phase transition at μ0Hc ≃ 7.5 T.
In the field range between 7.5 and 16 T, this partially
polarized QSL has a spin-lattice relaxation rate with

FIG. 1. Magnetic phase diagram of α-RuCl3 with field applied
in the ab plane. TN is determined from magnetization and
specific-heat data (Fig. 2). In the QSL phase, the color map
represents the exponent, α, determined from the power-law form
of the NMR spin-lattice relaxation rate, 1=35T1 ∝ Tα (Fig. 4). T#

represents the upper limit of the gapless low-T regime. Inset:
schematic representation of zero-field zigzag order in the hex-
agonal (ab) plane.
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be the most important open problem in the understanding of quantum
materials, and it is here that radically new ideas, including those derived
from recently developed non-perturbative studies in string theory, may
be useful.

More unique to the copper oxides is the behaviour observed in a range
of temperatures immediately above Tc in what is referred to as the
‘pseudogap’ regime. It is characterized by a substantial suppression of the
electronic density of states at low energies that cannot be simply related to
the occurrence of any form of broken symmetry. Although much about
this regime is still unclear, convincing experimental evidence has recently
emerged that there are strong and ubiquitous tendencies towards several
sorts of order or incipient order, including various forms of charge-
density-wave, spin-density-wave, and electron-nematic order. There is
also suggestive, but far from definitive, evidence of several sorts of novel
order—that is, never before documented patterns of broken symmetry—
including orbital loop current order and a spatially modulated super-
conducting phase referred to as a ‘pair-density wave’. There are many
fascinating aspects of these ‘intertwined orders’ that remain to be under-
stood, but their existence and many aspects of their general structure were
anticipated by theory7. Superconducting fluctuations also have an important
role in part of this regime, although to an extent that is still much debated.

The high-temperature superconducting phase itself has a pattern of
broken symmetry that is distinct from that of conventional superconduc-
tors. Unlike in conventional s-wave superconductors, the superconduct-
ing wavefunction in the copper oxides has d-wave symmetry8,9, that is, it
changes sign upon rotation by 90u. Associated with this ‘unconventional
pairing’ is the existence of zero energy (gapless) quasiparticle excitations
at the lowest temperatures, which make even the thermodynamic prop-
erties entirely distinct from those of conventional superconductors (which
are fully gapped). The reasons for this, and its relation to a proximate anti-
ferromagnetic phase, are now well understood, and indeed were also anti-
cipated early on by some theories10–12. However, while various attempts

to obtain a semiquantitative estimate of Tc have had some success13, there
are important reasons to consider this problem still substantially unsolved.

Highly correlated electrons in the copper oxides
The chemistry of the copper oxides amplifies the Coulomb repulsions
between electrons. The two-dimensional copper oxide layers (Fig. 3) are
separated by ionic, electronically inert, buffer layers. The stoichiometric
‘parent’ compound (Fig. 2, zero doping) has an odd-integer number of
electrons per CuO2 unit cell (Fig. 3). The states formed in the CuO2 unit
cells are sufficiently well localized that, as would be the case in a collec-
tion of well-separated atoms, it takes a large energy (the Hubbard U) to
remove an electron from one site and add it to another. This effect pro-
duces a ‘traffic jam’ of electrons14. An insulator produced by this classical
jamming effect is referred to as a ‘‘Mott insulator’’15. However, even a
localized electron has a spin whose orientation remains a dynamical degree
of freedom. Virtual hopping of these electrons produces, via the Pauli
exclusion principle, an antiferromagnetic interaction between neighbour-
ing spins. This, in turn, leads to a simple (Néel) ordered phase below room
temperature, in which there are static magnetic moments on the Cu sites
with a direction that reverses from one Cu to the next16,17.

The Cu-O planes are ‘doped’ by changing the chemical makeup of
interleaved ‘charge-reservoir’ layers so that electrons are removed (hole-
doped) or added (electron-doped) to the copper oxide planes (see the
horizontal axis of Fig. 2). In the interest of brevity, we will confine our
discussion to hole-doped systems. Hole doping rapidly suppresses the
antiferromagnetic order. At a critical doping of pmin, superconductivity
sets in, with a transition temperature that grows to a maximum at popt,
then declines for higher dopings and vanishes for pmax (Fig. 2). Materials
with p , popt are referred to as underdoped and those with popt , p are
referred to as overdoped.

It is important to recognize that the strong electron repulsions that
cause the undoped system to be an insulator (with an energy gap of 2 eV)
are still the dominant microscopic interactions, even in optimally doped
copper oxide superconductors. This has several general consequences. The
resulting electron fluid is ‘highly correlated’, in the sense that for an elec-
tron to move through the crystal, other electrons must shift to get out of
its way. In contrast, in the Fermi liquid description of simple metals, the
quasiparticles (which can be thought of as ‘dressed’ electrons) propagate
freely through an effective medium defined by the rest of the electrons.
The failure of the quasiparticle paradigm is most acute in the ‘strange metal’
regime, that is, the ‘normal’ state out of which the pseudogap and the
superconducting phases emerge when the temperature is lowered. None-
theless, in some cases, despite the strong correlations, an emergent Fermi
liquid arises at low temperatures. This is especially clear in the overdoped
regime (Fig. 2). But recently it has been shown that even in underdoped
materials, at temperatures low enough to quench superconductivity by
the application of a high magnetic field, emergent Fermi liquid behaviour
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Figure 2 | Phase diagram. Temperature versus hole doping level for the
copper oxides, indicating where various phases occur. The subscript ‘onset’
marks the temperature at which the precursor order or fluctuations become
apparent. TS, onset (dotted green line), TC, onset and TSC, onset (dotted red line for
both) refer to the onset temperatures of spin-, charge and superconducting
fluctuations, while T* indicates the temperature where the crossover to the
pseudogap regime occurs. The blue and green regions indicate fully developed
antiferromagnetic order (AF) and d-wave superconducting order (d-SC)
setting in at the Néel and superconducting transition temperatures TN and Tc,
respectively. The red striped area indicates the presence of fully developed
charge order setting in at TCDW. TSDW represents the same for incommensurate
spin density wave order. Quantum critical points for superconductivity and
charge order are indicated by the arrows.
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Figure 3 | Crystal structure. Layered copper oxides are composed of CuO2

planes, typically separated by insulating spacer layers. The electronic structure
of these planes primarily involves hybridization of a 3dx2 { y2 hole on the
copper sites with planar-coordinated 2px and 2py oxygen orbitals.
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Two-dimensional Hubbard Model

Phenomena 
– Superconductivity 
– Charge stripes 
– Magnetic stripes 
– Nematicity 
– Strange metal behavior 

 
Complexity 

– Partition function: !  
– Trace over 4N states; N: number of 

sites in lattice 
– Further approximations necessary

Z = Tre−βℋ

t
U

ℋ = − t ∑
⟨ij⟩,σ

c†
iσcjσ + U∑

i

ni↑ni↓
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Dynamic Cluster Quantum Monte Carlo Approximation (DCA)

Ḡ(K, iωn) =
Nc

N ∑
k∈𝒫K

G(k, iωn) =
Nc

N ∑
k∈𝒫K

1
iωn − εk + μ − Σc(K, iωn)

𝒢0(K, iωn) = [Ḡ−1(K, iωn) + Σc(K, iωn)]−1Σc(K, iωn) = 𝒢−1
0 (K, iωn) − G−1

c (K, iωn)

S[ϕ*, ϕ] = − ∫
β

0
dτ∫

β

0
dτ′ �∑

ij,σ

ϕ*iσ(τ)𝒢0,ij,σ(τ − τ′�)ϕjσ(τ) + ∫
β

0
dτ∑

i

Uϕ*i↑(τ)ϕi↑ϕ*i↓(τ)ϕi↓(τ)

Gc,ij,σ(τ − τ′�) =
1
Z ∫ 𝒟[ϕ*ϕ]ϕiσ(τ)ϕ*jσ(τ′�)e−S[ϕ*,ϕ] Z = ∫ 𝒟[ϕ*ϕ]e−S[ϕ*,ϕ];

(1) Coarse-graining

(2) Cluster exclusion

(3) Quantum Monte Carlo cluster solver

(4) New self-energy

𝒢0(K, iωn) , UGc(K, iωn)

Infinite size lattice

⤻⤻ ⤻
⤻

Cluster embedded in mean-field

DCA self-consistently maps infinite size lattice to 
effective cluster embedded in dynamic  

mean-field that describes the  
remaining lattice degrees  

of freedom

Numerically exact solution of effective cluster 
problem with quantum Monte Carlo

> 90% of 
computation
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Monte Carlo integration

Deterministic integration 

!  

– In d dimensions, error is !  
– With Simpson rule, error is !  

Monte Carlo integration 
– Use N randomly chosen points xi 

 

– Better: Importance sampling 
– Chose xi according to normalized probability 

distribution p(x) 

 

Markov chain 
!  

– Ergodicity, detailed balance 
– Probability of accepting a move:  

min(R,1) (Metropolis); R/(1+R) (heat bath) 

              !  

– Estimation of observables 

        !

∫
b

a
f(x)dx ≈

N

∑
i=1

f(a + iΔx)Δx + 𝒪(Δx2)

𝒪(N− 2
d )

𝒪(N− 4
d )

1
Ω ∫ f(x)dx ≈

1
N

N

∑
i=1

f(xi) + 𝒪(
Varf

N
)

1
Ω ∫ f(x)dx =

1
Ω ∫

f(x)
p(x)

p(x)dx ≈
1
N

N

∑
i=1

f(xi)
p(xi)

+ 𝒪(
Varf/p

N
)

x0 → x1 → x2 → … → xN

R ∝
p(xn+1)
p(xn)

⟨O⟩p ≈
1
N

N

∑
i=1

O(xi) + 𝒪(1/ N)
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Quantum Monte Carlo

Partition function 
!  

– Trace is over 4N states in Hilbert space of  

Observables 

– !  

– Map d-dimensional quantum system onto d+1 - 
dimensional classical system 

!  

– ! : value of observable in corresponding 
(artificial) classical system with weight !  

Fermion negative sign problem 
– !  can arise from Pauli exclusion principle 

when two fermions are exchanged along Markov 
chain !  

– Standard procedure 

!  

with ! . 

– Problem: 

                         !  

– Sign problem (statistical errors in observables) 
increases exponentially with inverse 
temperature, system size (and interaction 
parameters).

Z = Tre−βℋ

ℋ

⟨O⟩ =
1
Z

Tr [Oe−βℋ]

⟨O⟩ =
1
Z

Tr [Oe−βℋ] = ∑
i

O(xi)P(xi)

O(xi)
P(xi)

P(xi) < 0

x0 → x1 → x2 → … → xN

⟨O⟩ =
∑i O(xi)p(xi)

∑i p(xi)
=

∑i O(xi)s(xi) |p(xi) | /∑i |p(xi) |

∑i s(xi) |p(xi) | /∑i |p(xi) |
≡

⟨Os⟩′�
⟨s⟩′�

s(xi) = sign p(xi)

Δs
⟨s⟩

∼
eβNΔf

N
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Monte Carlo methods rely on random 

sampling and have statistical errors. In 

principle, Monte Carlo can tolerate reduced 

precision, if error is within statistical noise.
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Continuous-time auxiliary field quantum Monte Carlo solver
Partition function 

Monte Carlo sampling space, insertion and removal updates 

Probability for updating configuration x to x’ 

If move is accepted, update N-matrix, according to rank-1 (rank-ks) update

Z = Tr e−βH ∝
∞

∑
k=0

∑
s1…sk=±1

∫
β

0
dτ1…∫

β

τk−1

dτk ( K
2βNc )

k

∏
σ

det N−1
σ ({x, τ, s}k) ; G = NG0

Rx!x0 = min(1,R) ; R =
K

k + 1

Y

�

detN�1
� ({x 0, ⌧ 0, s 0})

detN�1
� ({x , ⌧ , s})

0 β

(x1,τ1,s1) (x2,τ2,s2) (x3,τ3,s3)

Gull et al., EPL ‘08

(x’3,τ’3,s’3)

are, respectively, the numbers of walker and accumulator
threads running on each node. On a multi-socket CPU node,
the walker and accumulator threads are distributed evenly
over the processors. On hybrid nodes, the compute intensive
walker threads run on the GPU, since they consist mostly of
matrix multiplications (see Fig. 3). The accumulators that
execute measurements, which typically are more complex
operations that benefit from latency optimized cores, run
on the multi-core CPU. When a simulation starts up, all
walkers begin from a random configuration running updates
until the average expansion order hki in eq. (10) converges,
at which point the particular walker is thermalized. At this
point the stochastic sampling of the Green’s function and
other observables begins. Walkers send their data (the N -
matrix) over to the pool of accumulator threads, where the
measurements are processed asynchronously. On a hybrid
system this involves transferring data from the GPU to the
CPU over the PCIe bus. Should all accumulators be busy,
the walker continues to update its configuration. However,
given the speed of the measurements with non-equidistant
fast Fourier transforms, the accumulators are typically ready
to take on measurements before the walkers are done with a
minimum sweep of hki updates required between measure-
ments. This implementation as it runs on a hybrid CPU-
GPU node is summarized in algorithm 3.

On the CPU only version of the code, the floating point
performance is measured by counting all floating point op-
erations with PAPI counters and dividing by the entire wall-
clock time of the entire simulation. Since such counters are
not available on GPUs, a lower bound for the floating point
operations performed when running simulations on a hy-
brid CPU-GPU system is computed analytically from the
matrix dimensions used on the sub-matrix updates of the
CT-AUX algorithm. Three DGEMM and one DTRSM op-
eration are necessary for a submatrix update in each of the
two spin channels. Two of these DGEMM are initializa-
tion steps. The actual update, represented in Fig. 3B, in-
volves one DGEMM and one DTRSM. Each DGEMM will
contribute 2 ks hki2 FLOPs, while the DTRSM accounts for

(A)

(B)

N’

N’

N

N G
N

kshki

��1

Figure 3: (A) Sketch of a rank 1 update with DGER:
The column and row are respectively the column of
Greens-function matrix G and the row of N, cor-
responding to the updated spin. (B) Sketch of a
submatrix-update with DGEMM: The fat column
and fat row are the bundled columns of G and the
bundled rows of N, corresponding to the updated
spins. The �-matrix is the Greens-function matrix
connecting all updated spins.

Algorithm 3 Hybrid-multicore implementation

1: Start with Nw walkers and Na accumulators.
2: while walker is not thermalized do
3: 1 submatrix-update (GPU)
4: end while
5: repeat
6: if walker then
7: do hki/ks submatrix-updates (GPU)
8: while all accumulators are busy do
9: 1 submatrix-update (GPU)
10: end while
11: end if
12: copy configuration from the walker (GPU) to the ac-

cumulator (CPU)
13: if accumulator then
14: do measurement (NFFT on CPU)
15: end if
16: until all accumulators are finished

k2

s hki FLOPs. Comparing this lower bound estimate with
identical simulations running on CPU-only system where we
measure all floating point operations, we observe that the
discrepancy is never larger than 5%.

5. COMPUTER SYSTEMS AND PERFOR-
MANCE MODEL

We use a single code base for the implementation of the
DCA and DCA+ algorithms (outer loop see algorithm 1 and
2), as well as the quantum Monte Carlo cluster solver de-
scribed in the previous section, on distributed multi-core
and hybrid CPU-GPU systems. The code is implemented
in C++ with template meta-programming techniques to hide
architectural complexities in the quantum Monte Carlo im-
plementation. We use MPI for inter-node parallelization,
pthreads for the multi-threading on the nodes, and CUDA
for the hybrid implementation. The simulations reported in
this work have been executed on distributed multi-core and
distributed hybrid CPU-GPU architectures. The following
computer systems are used for the performance results we
report in this and the next section:
Monte Rosa is a Cray XE6 distributed multi-core sys-

tem at the Swiss National Supercomputing Center (CSCS)
consisting of 1,496 compute nodes with two AMD Interlagos
processors running at 2.1 GHz and 16 cores each. Each node
is equipped with 32 GB DDR3-1600 RAM.
Todi is a Cray XK7 distributed hybrid CPU-GPU sys-

tem at CSCS consisting of 272 compute nodes with one 16
core AMD Interlagos processor running at 2.1 GHz, and one
NVIDIA K20X GPU that has 14 streaming multi-processors
running at 732 MHz. The compute nodes are equipped with
32 GB DDR3-1600 memory and the GPU has 6 GB GDDR5
memory.
Titan is a Cray XK7 distributed hybrid CPU-GPU sys-

tem at ORNL consisting of 18688 compute nodes with one 16
core AMD Interlagos processor running at 2.2 GHz, and one
NVIDIA K20X GPU that has 14 streaming multi-processors
running at 732 MHz. The compute nodes are equipped with
32 GB DDR3-1600 memory and the GPU has 6 GB GDDR5
memory.
Practically all the time of a fully self-consistent DCA(+)

calculation is spend in the CT-AUX cluster solver. In or-

are, respectively, the numbers of walker and accumulator
threads running on each node. On a multi-socket CPU node,
the walker and accumulator threads are distributed evenly
over the processors. On hybrid nodes, the compute intensive
walker threads run on the GPU, since they consist mostly of
matrix multiplications (see Fig. 3). The accumulators that
execute measurements, which typically are more complex
operations that benefit from latency optimized cores, run
on the multi-core CPU. When a simulation starts up, all
walkers begin from a random configuration running updates
until the average expansion order hki in eq. (10) converges,
at which point the particular walker is thermalized. At this
point the stochastic sampling of the Green’s function and
other observables begins. Walkers send their data (the N -
matrix) over to the pool of accumulator threads, where the
measurements are processed asynchronously. On a hybrid
system this involves transferring data from the GPU to the
CPU over the PCIe bus. Should all accumulators be busy,
the walker continues to update its configuration. However,
given the speed of the measurements with non-equidistant
fast Fourier transforms, the accumulators are typically ready
to take on measurements before the walkers are done with a
minimum sweep of hki updates required between measure-
ments. This implementation as it runs on a hybrid CPU-
GPU node is summarized in algorithm 3.

On the CPU only version of the code, the floating point
performance is measured by counting all floating point op-
erations with PAPI counters and dividing by the entire wall-
clock time of the entire simulation. Since such counters are
not available on GPUs, a lower bound for the floating point
operations performed when running simulations on a hy-
brid CPU-GPU system is computed analytically from the
matrix dimensions used on the sub-matrix updates of the
CT-AUX algorithm. Three DGEMM and one DTRSM op-
eration are necessary for a submatrix update in each of the
two spin channels. Two of these DGEMM are initializa-
tion steps. The actual update, represented in Fig. 3B, in-
volves one DGEMM and one DTRSM. Each DGEMM will
contribute 2 ks hki2 FLOPs, while the DTRSM accounts for

(A)

(B)

N’

N’

N

N G
N

kshki

��1

Figure 3: (A) Sketch of a rank 1 update with DGER:
The column and row are respectively the column of
Greens-function matrix G and the row of N, cor-
responding to the updated spin. (B) Sketch of a
submatrix-update with DGEMM: The fat column
and fat row are the bundled columns of G and the
bundled rows of N, corresponding to the updated
spins. The �-matrix is the Greens-function matrix
connecting all updated spins.

Algorithm 3 Hybrid-multicore implementation

1: Start with Nw walkers and Na accumulators.
2: while walker is not thermalized do
3: 1 submatrix-update (GPU)
4: end while
5: repeat
6: if walker then
7: do hki/ks submatrix-updates (GPU)
8: while all accumulators are busy do
9: 1 submatrix-update (GPU)
10: end while
11: end if
12: copy configuration from the walker (GPU) to the ac-

cumulator (CPU)
13: if accumulator then
14: do measurement (NFFT on CPU)
15: end if
16: until all accumulators are finished

k2

s hki FLOPs. Comparing this lower bound estimate with
identical simulations running on CPU-only system where we
measure all floating point operations, we observe that the
discrepancy is never larger than 5%.

5. COMPUTER SYSTEMS AND PERFOR-
MANCE MODEL

We use a single code base for the implementation of the
DCA and DCA+ algorithms (outer loop see algorithm 1 and
2), as well as the quantum Monte Carlo cluster solver de-
scribed in the previous section, on distributed multi-core
and hybrid CPU-GPU systems. The code is implemented
in C++ with template meta-programming techniques to hide
architectural complexities in the quantum Monte Carlo im-
plementation. We use MPI for inter-node parallelization,
pthreads for the multi-threading on the nodes, and CUDA
for the hybrid implementation. The simulations reported in
this work have been executed on distributed multi-core and
distributed hybrid CPU-GPU architectures. The following
computer systems are used for the performance results we
report in this and the next section:

Monte Rosa is a Cray XE6 distributed multi-core sys-
tem at the Swiss National Supercomputing Center (CSCS)
consisting of 1,496 compute nodes with two AMD Interlagos
processors running at 2.1 GHz and 16 cores each. Each node
is equipped with 32 GB DDR3-1600 RAM.

Todi is a Cray XK7 distributed hybrid CPU-GPU sys-
tem at CSCS consisting of 272 compute nodes with one 16
core AMD Interlagos processor running at 2.1 GHz, and one
NVIDIA K20X GPU that has 14 streaming multi-processors
running at 732 MHz. The compute nodes are equipped with
32 GB DDR3-1600 memory and the GPU has 6 GB GDDR5
memory.

Titan is a Cray XK7 distributed hybrid CPU-GPU sys-
tem at ORNL consisting of 18688 compute nodes with one 16
core AMD Interlagos processor running at 2.2 GHz, and one
NVIDIA K20X GPU that has 14 streaming multi-processors
running at 732 MHz. The compute nodes are equipped with
32 GB DDR3-1600 memory and the GPU has 6 GB GDDR5
memory.

Practically all the time of a fully self-consistent DCA(+)

calculation is spend in the CT-AUX cluster solver. In or-

Delayed updates
Alvarez et al., SC ’08 
Nukala et al., PRB ’09 
Gull et al., PRB ‘11

DGEMM
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Monte Carlo accumulator: Measurements of observables

Single-particle Green’s function G 
– Needed for self-consistency in DCA 
– Provides information on single-particle excitations 
– !  
– Use delayed non-equidistant FFT algorithm to calculate !  from !  

where !  is random time grid 

4-point two-particle Green’s function G4 

– High-dimensional tensor !  

– Calculated only in last DCA iteration 
– Provides information on linear response of system to external fields,  

and more (e.g. superconducting transition temperature Tc) 
!  

!  
!  

– Typical case: ~ 1000 FTs of ~ 70 x 70 matrices (batched dgemm in MAGMA)

G(k, ω) = 𝒢0(k, ω) − 𝒢0(k, ω)M(k, ω)𝒢0(k, ω)

M(k, ω) M(k, τi)
τi

G4(Q, ν, K1, ω1, K2, ω2)

G4(Q, K1, K2) + = ∑
σ

Gσ(Q − K1, Q − K2)Gσ̄(K1, K2)

G(ω1, ω2) = G0(ω1) − G0(ω1)M(ω1, ω2)G0(ω2)

M(ω1, ω2) = FT2D[M(τ1, τ2)]

Ḡ(K) = ∫
𝒫K

dk G[Σ(k)]

Σ(k) = Σ[Ḡ]

DCA

�K1, ω1, ↑

!G4

�K2, ω2, ↑

�Q − K1, ν − ω1, ↓ �Q − K2, ν − ω2, ↓
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Markov Chain, updates and measurement of observables

Monte Carlo step

Thermalization/Warm up

Ex
pa

ns
io
n 
or
de

r k

Accumulator: Periodically measure observables  
                         (G and G4)

Overall scaling: 𝒪(k3) ∼ 𝒪((NcU/T )3)

Walker: Exploration of phase space

are, respectively, the numbers of walker and accumulator
threads running on each node. On a multi-socket CPU node,
the walker and accumulator threads are distributed evenly
over the processors. On hybrid nodes, the compute intensive
walker threads run on the GPU, since they consist mostly of
matrix multiplications (see Fig. 3). The accumulators that
execute measurements, which typically are more complex
operations that benefit from latency optimized cores, run
on the multi-core CPU. When a simulation starts up, all
walkers begin from a random configuration running updates
until the average expansion order hki in eq. (10) converges,
at which point the particular walker is thermalized. At this
point the stochastic sampling of the Green’s function and
other observables begins. Walkers send their data (the N -
matrix) over to the pool of accumulator threads, where the
measurements are processed asynchronously. On a hybrid
system this involves transferring data from the GPU to the
CPU over the PCIe bus. Should all accumulators be busy,
the walker continues to update its configuration. However,
given the speed of the measurements with non-equidistant
fast Fourier transforms, the accumulators are typically ready
to take on measurements before the walkers are done with a
minimum sweep of hki updates required between measure-
ments. This implementation as it runs on a hybrid CPU-
GPU node is summarized in algorithm 3.

On the CPU only version of the code, the floating point
performance is measured by counting all floating point op-
erations with PAPI counters and dividing by the entire wall-
clock time of the entire simulation. Since such counters are
not available on GPUs, a lower bound for the floating point
operations performed when running simulations on a hy-
brid CPU-GPU system is computed analytically from the
matrix dimensions used on the sub-matrix updates of the
CT-AUX algorithm. Three DGEMM and one DTRSM op-
eration are necessary for a submatrix update in each of the
two spin channels. Two of these DGEMM are initializa-
tion steps. The actual update, represented in Fig. 3B, in-
volves one DGEMM and one DTRSM. Each DGEMM will
contribute 2 ks hki2 FLOPs, while the DTRSM accounts for

(A)

(B)

N’

N’

N

N G
N

kshki

��1

Figure 3: (A) Sketch of a rank 1 update with DGER:
The column and row are respectively the column of
Greens-function matrix G and the row of N, cor-
responding to the updated spin. (B) Sketch of a
submatrix-update with DGEMM: The fat column
and fat row are the bundled columns of G and the
bundled rows of N, corresponding to the updated
spins. The �-matrix is the Greens-function matrix
connecting all updated spins.

Algorithm 3 Hybrid-multicore implementation

1: Start with Nw walkers and Na accumulators.
2: while walker is not thermalized do
3: 1 submatrix-update (GPU)
4: end while
5: repeat
6: if walker then
7: do hki/ks submatrix-updates (GPU)
8: while all accumulators are busy do
9: 1 submatrix-update (GPU)
10: end while
11: end if
12: copy configuration from the walker (GPU) to the ac-

cumulator (CPU)
13: if accumulator then
14: do measurement (NFFT on CPU)
15: end if
16: until all accumulators are finished

k2

s hki FLOPs. Comparing this lower bound estimate with
identical simulations running on CPU-only system where we
measure all floating point operations, we observe that the
discrepancy is never larger than 5%.

5. COMPUTER SYSTEMS AND PERFOR-
MANCE MODEL

We use a single code base for the implementation of the
DCA and DCA+ algorithms (outer loop see algorithm 1 and
2), as well as the quantum Monte Carlo cluster solver de-
scribed in the previous section, on distributed multi-core
and hybrid CPU-GPU systems. The code is implemented
in C++ with template meta-programming techniques to hide
architectural complexities in the quantum Monte Carlo im-
plementation. We use MPI for inter-node parallelization,
pthreads for the multi-threading on the nodes, and CUDA
for the hybrid implementation. The simulations reported in
this work have been executed on distributed multi-core and
distributed hybrid CPU-GPU architectures. The following
computer systems are used for the performance results we
report in this and the next section:
Monte Rosa is a Cray XE6 distributed multi-core sys-

tem at the Swiss National Supercomputing Center (CSCS)
consisting of 1,496 compute nodes with two AMD Interlagos
processors running at 2.1 GHz and 16 cores each. Each node
is equipped with 32 GB DDR3-1600 RAM.
Todi is a Cray XK7 distributed hybrid CPU-GPU sys-

tem at CSCS consisting of 272 compute nodes with one 16
core AMD Interlagos processor running at 2.1 GHz, and one
NVIDIA K20X GPU that has 14 streaming multi-processors
running at 732 MHz. The compute nodes are equipped with
32 GB DDR3-1600 memory and the GPU has 6 GB GDDR5
memory.
Titan is a Cray XK7 distributed hybrid CPU-GPU sys-

tem at ORNL consisting of 18688 compute nodes with one 16
core AMD Interlagos processor running at 2.2 GHz, and one
NVIDIA K20X GPU that has 14 streaming multi-processors
running at 732 MHz. The compute nodes are equipped with
32 GB DDR3-1600 memory and the GPU has 6 GB GDDR5
memory.
Practically all the time of a fully self-consistent DCA(+)

calculation is spend in the CT-AUX cluster solver. In or-

DGEMM
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Monte Carlo parallelism: Concurrent independent Markov chains

…

Split single Markov chain into many smaller chains.  
Fixed thermalization steps do not scale.

=

+ + +
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DCA++ code
– Implements dynamic cluster quantum Monte Carlo 

approximation with QMC solvers 

– Co-developed at ORNL and ETH Zürich 

– 2008 Gordon Bell winner (peak performance),  
finalist in 2013 

– Recently re-written in C++14, heavily templated 

– MPI, C++ std:threads, CUDA 

– BLAS, LAPACK, MAGMA for dense linear algebra 
operations 

– FFTW3 for fast Fourier transforms on CPU,  
MAGMA on GPU 

– Different QMC algorithms implemented  
(Hirsch-Fye QMC —> continuous-time auxiliary field, 
interaction representation, hybridization expansion QMC) 

– SPEC MPI ACCEL benchmark suite code (2020) 

– ~ 75 PFlops on Summit (FP64)

⤻⤻ ⤻
⤻

Please cite this article as: U.R. Hähner, G. Alvarez, T.A. Maier et al., DCA++: A software framework to solve correlated electron problems with modern quantum cluster
methods, Computer Physics Communications (2019), https://doi.org/10.1016/j.cpc.2019.01.006.
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Fig. 8. (Color online) Schematic overview of the code base. The modular and hierarchical structure reflects the generic design of the DCA++ code.

3. The DCA++ code

3.1. Main components

The main purpose of this section is to give an overview of
the key parts and main capabilities of the DCA++ code. A visual
summary of the code base is shown in Fig. 8.

We have chosen C++ as the primary implementation language
for its generic programming model, which, besides easy extensi-
bility, allows us to hide architectural details. The C++14 standard,
which DCA++ adopts, providesmanymodern language features for
effective and safe programming, while still having a wide compiler
support. On top of C++, we use CUDA to utilize GPU resources in
performance critical parts of the code.

Cluster mapping. Distinguishing DCA and DCA+ from finite-size
methods, the coarse-graining procedure is a central element of
the code. In addition to the traditional coarse-graining, which
partitions the first Brillouin zone according to the Brillouin zones
of the superlattice, the interlaced coarse-graining developed by
Staar et al. [17] is implemented with adjustable number of pe-
riods, that is variable degree of interleaving. Besides the coarse-
graining routines, the cluster mapping module contains methods
to update the chemical potential and execute the cluster-exclusion
step. In LDA+DMFT calculations the double-counting problem is
addressed by the correspondent submodule with a constant cor-
rection term [28], specified as an input parameter.

Lattice mapping. The framework of DCA+ requires a non-trivial
lattice mapping to generate a lattice self-energy and irreducible
vertex function with full momentum resolution. After interpola-
tion of the cluster functions onto the fine lattice grid, the lattice
mapping becomes a deconvolution problem. In the case of the
self-energy, we employ the iterative Richardson–Lucy deconvolu-
tion algorithm as explained in [9]. For the deconvolution of the
irreducible vertex function we have chosen a simpler approach.
After Fourier transformation of the convolution equation (44) to
real space, the deconvolution problem presents itself as a simple
division.

Cluster solver. Solving the effective cluster problem and comput-
ing a new estimate of the cluster self-energy is the most time
consuming part in a DCA or DCA+ calculation. For this reason,
lots of effort has been put in the development of a cutting edge
implementation of the CT-AUX algorithm including submatrix up-
dates and efficient NFFT measurements. With the aim of featuring
optimal methods for the entire spectrum of quantum impurity
models, we provide a complementary cluster solver to CT-AUX
in the form of the segment formulation of CT-HYB restricted to
single-site problems (SS-CT-HYB). Besides the two continuous-
time QMC methods, DCA++ implements two other cluster solvers,
each bound to a special purpose. A high temperature series ex-
pansion (HTS) solver may help improve convergence of the lattice
mapping by computing a fourth order perturbation expansion of
the self-energy with respect to the on-site Coulomb interaction U .
To validate QMC methods and new models, an ED solver can be
employed to compute exact results on small lattices in finite-size
calculations (no mean-field).

Models. DCA++ is able to simulate standard, extended and frus-
trated Hubbard models on various types of lattices. 2D square
and triangular lattices, and a bilayer square lattice corresponding
to a two-orbital model are currently supported, but new lattices
and models can easily be added upon need. In particular, the
code’s generic structure based on C++ templates permits to easily
treat 1D and 3D lattices, too. In the framework of LDA+DMFT
real materials such as CuO2 and NiO can be studied in ab initio
calculations.

Input/output. Running simulations requires reading input files and
writing out results. The input and output (I/O) module supports
two data formats, HDF5 [29] and JSON [30]. While JSON’s human-
readability makes it very suitable for specifying input parameters,
we recommend using the binary HDF5 format to write output.
HDF5 features high speed in reading andwriting data, and requires
less storage size compared to other data formats.

Parallelization. The computationally most expensive part of a DCA
or DCA+ calculation is the QMC step. Fortunately, Monte Carlo

Hähner et al., CPC ‘18
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Reduced precision test

Matrix multiply test 
– 1024 x 1024 and 2048 x 2048 random 

matrices 
– Baseline: CPU long doubles 
– Ten runs of same matrices on CPU and 

GPU (NVIDIA G80) computed in single-
precision 

– Mean relative error due to single-
precision ~ 10-7 similar on CPU and GPU

3.1.2. Software
One favorable feature of NVIDIA hardware is the support for CUDA (Compute Unified Device Architecture), NVIDIA’s soft-

ware development platform supporting general purpose computation on their GPUs. This system includes the CUDA runtime
API for handling execution and data movement, a C compiler with extensions for addressing the GPU, and even includes
some higher level libraries, such as BLAS (Basic Linear Algebra Subprograms) and FFT (Fast Fourier Transform) libraries. This
is a more viable alternative for scientific application developers than programming in graphics APIs like OpenGL and DirectX.

3.2. Matrix multiply

3.2.1. Accuracy
For an initial, controlled study of accuracy, we examine the results from a matrix multiply on random matrices and exam-

ine the results relative to a baseline result computed on the CPU using long doubles. The source was compiled using gcc 3.4.6
with –O2. Fig. 2 shows the results for ten runs of the same 1024 ! 1024 input matrices for the CPU and GPU results com-
puted in single precision. Though a small difference, the mean relative error of the GPU result was higher than the CPU result
by a nearly consistent 0.5%. Fig. 3 shows the mean relative error for 2048 ! 2048 matrices: though the error was larger for
both the CPU and GPU, the mean GPU relative was again larger than the CPU, this time by 0.26%.

For double precision arithmetic, we performed the GPU tests with a preproduction sample of the GT200 card from NVI-
DIA, using Beta drivers. Nevertheless, the GPU and CPU accuracy was indistinguishable, with both having a mean relative
error of 6.3e"16 for 10242 matrices and 8.9e"16 for 20482 matrices compared to the long-double baseline result.

Fig. 1. NVIDIA G80 block diagram (Source: NVIDIA).

Fig. 2. Matrix multiply mean relative error, 1k ! 1k.
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3.2.2. Performance
Table 1 shows the relative performance of the matrix multiple on the G80 and GT200 cards compared to two different

AMD Opteron and BLAS implementations. The G80 and GT200 both show marked improvements, even compared to a highly
optimized, threaded BLAS matrix multiply.

4. Case study: Quantum Monte Carlo simulation

4.1. Background: the DCA algorithm

Condensed matter physics includes studies in a wide range of materials science problems, from exotic phases of matter
through superconductivity. The study of high temperature superconductivity, and, more generally, strongly correlated elec-
trons systems is one of the most important areas in condensed matter theory. One approach, and the one that will be fol-
lowed here, is to formulate the problem on a regular lattice which appears naturally due to the crystalline structure of
solids. To study superconductivity in cuprates the 2D Hubbard model [12] is simulated on a lattice, and this simulation is
carried out using the DCA++ code.

The complexity of these quantum mechanical problems necessitates some approximations. For instance, a large lattice is
computationally infeasible – even small lattices may require inordinate amounts of computational horsepower to solve ade-
quately. However, the interaction on a large lattice may be approximated by separation into both proximal interaction on a
smaller lattice (cluster) and a dynamical mean field used to represent more distant interactions. These approximations are
usually reliable and help make the problem tractable. But even with these simplifying assumptions, solving the problem on
the smaller cluster (the so-called ‘‘impurity problem”) remains difficult, and Quantum Monte Carlo (QMC) statistical sam-
pling techniques are used to find solutions through the power of large quantities of computing resources. The QMC method
can be considered an ‘‘exact” method within a controllable error and, therefore, it does not introduce additional approxima-
tions. Fig. 4 shows an example of this quantum cluster approximation: a slice of a crystalline structure (left) is approximated
with the 2D Hubbard model on a regular lattice (middle), and the quantum cluster is then treated within a dynamical mean
field approximation (right). For a more complete review see [14] and references therein.

This is the essence of the quantum cluster approximation, or dynamical cluster approximation (DCA).

Fig. 3. Matrix multiply mean relative error, 2k ! 2k.

Table 1
Performance of matrix multiply in GFLOPS.

Single precision Double precision

NVIDIA G80, CUBLAS 120. n/a
NVIDIA GT200, CUBLAS 220. 45.
AMD Opteron (K8 2.0 GHz), netlib BLAS 0.68 0.50
AMD Opteron (4 quad-core K10 2.3 GHz), Goto BLAS (default flags, 1 MPI task) 13.6 6.70

154 J.S. Meredith et al. / Parallel Computing 35 (2009) 151–163Single precision mean error (relative to long doubles)

1k x 1k 2k x 2k

Single precision Double precision

NVIDIA G80 120 n/a

NVIDIA GT200 220 45

Performance (GFlops)

Meredith  et al., Parallel Computing ‘09
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Mixed precision DCA on CPU
DCA with mixed single/double precision 

– Coarse-graining (mapping of lattice to cluster) in 
double precision 

– QMC in single-precision (walkers and accumulators) 

Leading eigenvalue of Bethe-Salpeter 
equation 

!  

!  

– Superconducting transition when leading eigenvalue 
!  

Single vs. double precision 
– Single precision results have less than 1% deviation 

from double precision results 
– Variation within double precision runs greater than 

discrepancy between single and double precision 
runs

GQ
4 = GG + GG ΓQ

pp GQ
4

ΓQ
pp GG ϕα = λαϕα

λα = 1

prevalent in GPUs today, a very important question is how this algorithm fares in a lesser precision than double. We first
examine the tolerance of this algorithm to CPU-based single precision arithmetic.

Fig. 6 shows the how the single precision runs track the double precision. At first glance these appear to be in good agree-
ment. Note that the critical temperature appears in this graph as the temperature (horizontal axis) where the leading eigen-
value (vertical axis) crosses one.

A more detailed analysis can be seen in Fig. 7: the error bars in this figure show the extrema of the leading eigenvalue
obtained across a set of double precision runs for the 17 temperatures. These minimum and maximum values are normalized
to the mean of these double precision runs (the constant line at 100%), and are thus shown as percentages. An example single
precision run was performed under the same conditions on the CPU, and the values are shown for comparison (the varying
line). With few exceptions, the single precision runs averaged less than 1% deviation from the double precision mean. And, in
general, variation within the double precision runs (the error bars) was greater than the discrepancy between the single and
double precision results. We later compare a sequence of runs in more detail near the critical temperature.

4.2.3. GPU precision effects
The previous section showed that within the CPU, single precision closely tracked the double precision values. This is a

good indication that for this study, single precision is sufficiently accurate to achieve the correct scientific results.
However, as has been mentioned, GPUs do not necessarily follow the same accuracy conventions, for example in arith-

metic rounding, as CPUs. Furthermore, the computational paradigm for GPU execution is one of a massively threaded,
data-parallel approach, the order of operations and frequency of accumulations may look dramatically different from stan-
dard CPU-based approaches, and thus might lead to further differences from CPU results.

Therefore, to study the accuracy on GPUs, we must compare the results between the CPU precision runs with the GPU-
accelerated full DCA++ code (the porting and acceleration is described in detail in the next section). To answer this question,
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Fig. 6. Comparison of mean leading eigenvalues for several single and double precision runs.
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Fig. 7. Detailed comparison of single and double precision. Error bars show deviation within the double precision runs.
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prevalent in GPUs today, a very important question is how this algorithm fares in a lesser precision than double. We first
examine the tolerance of this algorithm to CPU-based single precision arithmetic.

Fig. 6 shows the how the single precision runs track the double precision. At first glance these appear to be in good agree-
ment. Note that the critical temperature appears in this graph as the temperature (horizontal axis) where the leading eigen-
value (vertical axis) crosses one.

A more detailed analysis can be seen in Fig. 7: the error bars in this figure show the extrema of the leading eigenvalue
obtained across a set of double precision runs for the 17 temperatures. These minimum and maximum values are normalized
to the mean of these double precision runs (the constant line at 100%), and are thus shown as percentages. An example single
precision run was performed under the same conditions on the CPU, and the values are shown for comparison (the varying
line). With few exceptions, the single precision runs averaged less than 1% deviation from the double precision mean. And, in
general, variation within the double precision runs (the error bars) was greater than the discrepancy between the single and
double precision results. We later compare a sequence of runs in more detail near the critical temperature.

4.2.3. GPU precision effects
The previous section showed that within the CPU, single precision closely tracked the double precision values. This is a

good indication that for this study, single precision is sufficiently accurate to achieve the correct scientific results.
However, as has been mentioned, GPUs do not necessarily follow the same accuracy conventions, for example in arith-

metic rounding, as CPUs. Furthermore, the computational paradigm for GPU execution is one of a massively threaded,
data-parallel approach, the order of operations and frequency of accumulations may look dramatically different from stan-
dard CPU-based approaches, and thus might lead to further differences from CPU results.

Therefore, to study the accuracy on GPUs, we must compare the results between the CPU precision runs with the GPU-
accelerated full DCA++ code (the porting and acceleration is described in detail in the next section). To answer this question,
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CPU-based single precision

Single-precision has sufficient accuracywe first look at the distribution of the leading eigenvalues for the last two temperatures in the sequence of runs, since these
are used to directly calculate the result. Figs. 8 and 9 show results for six runs for the double-precision CPU, single-precision
CPU, and single-precision GPU implementations. The mean value for the CPU and GPU single precision runs was within 0.15%
of the double-precision mean at a temperature of 0.08 and within 0.06% at a temperature of 0.04.

We turn now to the final result calculated for the critical temperature Tc. Because of the way in which it is calculated from
the leading eigenvalues for each sequence of runs, this value is an even more sensitive measure.

The final values for Tc are shown in Fig. 10 for six each of CPU double, CPU single, and GPU single precision runs. As seen in
the figure, the mean across runs was comparable between each of the various precisions on the devices – and certainly well
within the variation within any given configuration. The variance of the single precision runs – both CPU and GPU – was
higher than the double precision CPU runs. Finally, although it will require more data to increase the confidence of this
assessment, the mean Tc of the GPU runs had a standard error of less than 0.8% relative to the double precision mean Tc.

4.3. Performance

4.3.1. Initial acceleration of QMC update step
Initial profiles of the DCA++ code revealed that on large problems, the vast majority of total runtime (90% or more) was

spent within the QMC update step. Furthermore, within the QMC update step, the runtime was completely dominated by the
matrix–matrix multiply that occurs in the Hirsch–Fye solver when updating the Green’s function at the end of the batched
smaller steps (see Section 4.1 for details). This leads to an obvious initial target for acceleration: the matrix–matrix multiply,
along with its accumulation into the Green’s function, is performed in the CPU code with a BLAS level 3 DGEMM operation
for double precision (and SGEMM for single precision).

The CUDA API from NVIDIA does have support for BLAS calls (only single precision at the time of this writing). Unfortu-
nately, it is not a literal drop-in replacement – although one could wrap this ‘‘CUBLAS” API to attempt this route, there will be
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Fig. 8. Comparison of leading eigenvalue distributions at temperature = 0.08.

1.14

1.15

1.16

1.17

1.18
CPU Double Prec CPU Single Prec GPU Single Prec

Fig. 9. Comparison of leading eigenvalue distributions at temperature = 0.04.
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overheads incurred by being naïve about using the GPU in this way. Since the GPU hangs off the PCI-Express bus, and has its
own local memory, using the GPU as a simple accelerator for the BLAS function calls would require allocation of GPU-local
memory for matrix inputs, transfer of the matrices to the GPU, transfer of the result back, and deallocation of the GPU-local
memory – all in addition to the actual BLAS computation and during every pass.

That said, for our initial attempt at acceleration we take a minimal-effort approach and retain the data transfer overheads.
However, since the calls to the Hirsch–Fye solver reuse the same matrices, even though these matrices could be modified on
the CPU, we at least can at least amortize the matrix allocation/deallocation overheads. Specifically, we allocate space in
GPU-local memory only once (the problem sizes are not so large that this is a problem), and when each BLAS call occurs
we can re-use this same local memory to receive data transfers. In this initial implementation, we will transfer all input
matrices to, and all result matrices from, the GPU for each BLAS call.

The results of this acceleration are show in Fig. 11 for a small problem, Fig. 12 for a medium problem, and Fig. 13 for a
large problem (note that ‘‘time slices” is a term which refers to a factor of quantization in the algorithm, and larger values
lead directly to larger matrices). The hardware used in this comparison was an NVIDIA 8800GTS (96 SPs, 500 MHz) GPU, and
a 2.0 GHz single-core AMD Opteron. These devices have been superseded by recent hardware, but are of approximately sim-
ilar age.
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Fig. 10. Distribution of Tc for each implementation across a set of six runs.
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embedded cluster. Speedups ranged from 1.6! to 5.3! faster.
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Mixed precision DCA on ORNL’s Jaguar

Simulation of disorder effects in 
high-Tc superconductors 

– Double-precision in cluster mapping 
– Single-precision in QMC solver 
– No loss of precision in single-precision 

runs 
– Speedup of 1.5x - 2x 
– BLAS SGEMM factor 2.02 faster than 

DGEMM 
– ~ 400 TFlop/s on Cray XT4,  

later ~1 PFlop/s on Cray XT5

length of the respective QMC runs were similar in terms of the
total number of updates and measurements, and there seems
to be no loss in precision of the final result of the calculations.
However, the speed-up of the mixed precision runs over the
double precision runs can be significant. We find the speed-
up to be typically a factor 1.5 or more, with runs for larger
clusters the acceleration can be as high as a factor of 2.
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Fig. 4. Comparison of the critical temperatures calculated on a 4-site cluster
for U = 8t for the homogeneous system, for multiple runs done in double
(red circles) and mixed precision (blue squares). The black diamonds indicate
averages of the respective data sets.

In Figure 5 we show how the time to solution changes as
a function of number of delays in the update of the Green
function using the modified HF-QMC algorithm we discussed
in section II-C. Compared to the original HF-QMC, which
would correspond to a delay of 1, the acceleration is very
substantial. At delays of about 56 and 64 for mixed and
double precision runs, respectively, the additional overhead
caused by the delayed updates starts to outweigh the benefits
of increasing the squareness of the matrices in the s/dgemm
calls of the update. For the remaining results of this section
and the next, we use a delay of 56.

The ratio of double to single precision floating point op-
erations in the mixed precision runs is about 1:1000 and the
single precision part of the calculations is dominated by matrix
multiplies in the QMC updates, where the matrix shape is
k×Nt and the inner loop is over the shorter dimension k. We
have timed the BLAS SGEMM and DGEMM calls for the
type of runs presented in Figure 5, and find that SGEMM is
a factor 2.02 faster than DGEMM. The best performance was
achieved with K. Goto’s implementation of BLAS (6) in which
DGEMM runs at 6.2GFlop/s per core, which corresponds to
about 74 percent of the theoretical peak performance. These
numbers explain why the overall time to solution improvement
of the mixed precision runs can be almost a factor 2 compared
to the double precision runs.

B. Parallel efficiency

With the QMC cluster solver used in the present simula-
tions, the great majority of time is spent updating the Green
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Fig. 5. Time to solution for different numbers of delays in the modified
HF-QMC algorithm (see section II-C). The results are for a Nc = 16 cluster
at inverse temperature β = 150 using 150 time slices (Nt = 2400). The
calculations consisted of 4 parallel Markov chains running each on one core
on a Cray XT4 with quad-core AMD Budapest processors running at 2.1
GHz.

function and performing measurements. Until self-consistency
is reached in the self-energy, that is, typically in all but
the last iteration of the DCA loop, only the averaged Green
function and quantities such as the cluster charge susceptibility
that are inexpensive to compute have to be measured. In
this phase of the calculation, the performance is therefore
dominated by DGEMM calls with matrices mentioned above.
During the last iteration, when the self-energy is converged
and one can measure meaningful physical quantities such
as spin-spin correlation functions, the measurements can be
quite involved and use about the same fraction of the run-
time as the update sweeps between measurements. In order
to compute the superconducting transition temperatures as
in the previous section, we have to measure the pair-field
susceptibility. Measuring this quantity, which is performed in
reciprocal space, requires two lattice Fourier transforms that
have been implemented in terms of a Kronecker product that
requires 8 × Nt complex matrix multiplies (using ZGEMM)
per measurement - the typical matrix dimensions are (Nc by
Nc), (Nc by Nl), and (Nl by Nl).

There are three natural levels of parallelism that have been
implemented (see Figure 2 and algorithm template 1 for
top two levels). At the top level we have the paralleliza-
tion over disorder configurations, which is straightforwardly
implemented with MPI. Note that for a typical cluster size
of Nc = 16 sites and binary disorder, we have to average
by sampling over 216 configurations. The second level is
within the HF-QMC cluster solver, where the measurements
are spread over parallel Markov chains. At the end of every
HF-QMC phase of the runs, we average the measured cluster
Green function as well as other quantities over the parallel
Markov chains, and subsequently we average over all disorder
configurations before entering the coarse-graining phase of
the DCA loop. The last HS field configuration is then used
as a starting point in the cluster solver for the next DCA

length of the respective QMC runs were similar in terms of the
total number of updates and measurements, and there seems
to be no loss in precision of the final result of the calculations.
However, the speed-up of the mixed precision runs over the
double precision runs can be significant. We find the speed-
up to be typically a factor 1.5 or more, with runs for larger
clusters the acceleration can be as high as a factor of 2.
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(red circles) and mixed precision (blue squares). The black diamonds indicate
averages of the respective data sets.

In Figure 5 we show how the time to solution changes as
a function of number of delays in the update of the Green
function using the modified HF-QMC algorithm we discussed
in section II-C. Compared to the original HF-QMC, which
would correspond to a delay of 1, the acceleration is very
substantial. At delays of about 56 and 64 for mixed and
double precision runs, respectively, the additional overhead
caused by the delayed updates starts to outweigh the benefits
of increasing the squareness of the matrices in the s/dgemm
calls of the update. For the remaining results of this section
and the next, we use a delay of 56.

The ratio of double to single precision floating point op-
erations in the mixed precision runs is about 1:1000 and the
single precision part of the calculations is dominated by matrix
multiplies in the QMC updates, where the matrix shape is
k×Nt and the inner loop is over the shorter dimension k. We
have timed the BLAS SGEMM and DGEMM calls for the
type of runs presented in Figure 5, and find that SGEMM is
a factor 2.02 faster than DGEMM. The best performance was
achieved with K. Goto’s implementation of BLAS (6) in which
DGEMM runs at 6.2GFlop/s per core, which corresponds to
about 74 percent of the theoretical peak performance. These
numbers explain why the overall time to solution improvement
of the mixed precision runs can be almost a factor 2 compared
to the double precision runs.

B. Parallel efficiency

With the QMC cluster solver used in the present simula-
tions, the great majority of time is spent updating the Green
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HF-QMC algorithm (see section II-C). The results are for a Nc = 16 cluster
at inverse temperature β = 150 using 150 time slices (Nt = 2400). The
calculations consisted of 4 parallel Markov chains running each on one core
on a Cray XT4 with quad-core AMD Budapest processors running at 2.1
GHz.

function and performing measurements. Until self-consistency
is reached in the self-energy, that is, typically in all but
the last iteration of the DCA loop, only the averaged Green
function and quantities such as the cluster charge susceptibility
that are inexpensive to compute have to be measured. In
this phase of the calculation, the performance is therefore
dominated by DGEMM calls with matrices mentioned above.
During the last iteration, when the self-energy is converged
and one can measure meaningful physical quantities such
as spin-spin correlation functions, the measurements can be
quite involved and use about the same fraction of the run-
time as the update sweeps between measurements. In order
to compute the superconducting transition temperatures as
in the previous section, we have to measure the pair-field
susceptibility. Measuring this quantity, which is performed in
reciprocal space, requires two lattice Fourier transforms that
have been implemented in terms of a Kronecker product that
requires 8 × Nt complex matrix multiplies (using ZGEMM)
per measurement - the typical matrix dimensions are (Nc by
Nc), (Nc by Nl), and (Nl by Nl).

There are three natural levels of parallelism that have been
implemented (see Figure 2 and algorithm template 1 for
top two levels). At the top level we have the paralleliza-
tion over disorder configurations, which is straightforwardly
implemented with MPI. Note that for a typical cluster size
of Nc = 16 sites and binary disorder, we have to average
by sampling over 216 configurations. The second level is
within the HF-QMC cluster solver, where the measurements
are spread over parallel Markov chains. At the end of every
HF-QMC phase of the runs, we average the measured cluster
Green function as well as other quantities over the parallel
Markov chains, and subsequently we average over all disorder
configurations before entering the coarse-graining phase of
the DCA loop. The last HS field configuration is then used
as a starting point in the cluster solver for the next DCA

Ḡ(K) = ∫
𝒫K

dk G[Σ(k)]

Σ(k) = Σ[Ḡ]

DCA

Alvarez et al., SC ‘08
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Memory improvements due to mixed precision

Most memory intensive part in DCA++ 
– 4-point Green’s function !  
– Typical production runs (single-band Hubbard): 

# Q, K1, K2: 32 
# !    : 128 
Total: 323 x 1283 ≈ 7 x 1010 complex numbers 

– Storage requirement FP64: ~ 1 TB 

More complex problems 
– Multi-orbital models 
– 4-point Green’s function !  

– E.g. 3-orbital model: another factor of 34 —> ~ 100 TB (FP64)

G4(Q, ν, K1, ω1, K2, ω2)

ν, ω1, ω2

G4,ℓ1ℓ2ℓ3ℓ4
(Q, ν, K1, ω1, K2, ω2)

�K1, ω1, ↑

!G4

�K2, ω2, ↑

�Q − K1, ν − ω1, ↓ �Q − K2, ν − ω2, ↓

�K1, ω1, ℓ1, ↑

!G4

�K2, ω2, ℓ4, ↑

�Q − K1, ν − ω1, ℓ2, ↓ �Q − K2, ν − ω2, ℓ3, ↓



!18

DCA++ and Tensor Cores: Half-precision arithmetics?

Tensor Cores 
– V100 GPUs have hardware acceleration FP16 arithmetics 
– 120 TFlop/s  

Matrix multiply on Nvidia V100 

Brute force? 
– Error due to half-precision likely too large in most cases

Matrix matrix multiply on Nvidia V100 
(Stan Tomov, Presentation at OLCF User Meeting,  

Oak Ridge, 2019)

FP64 → FP32  ~ 2x faster

FP32 → FP16  ~ 2x faster

FP32 → FP16 (TC)  ~ 8x faster
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Half-precision arithmetics for DCA++ ?

General idea for FP16 arithmetics with FP32 accuracy 
(Ed D’Azevedo) 

– Approximate FP32 vector by scaled sum of 2 FP16 vectors 
– !  ;  !  
– Combined accuracy is 22 bits in mantissa 
– Use tensor cores to perform !  
– Can be evaluated approximately (~ 10-7 error) by  

3 matrix-matrix multiplies of FP16 matrices on tensor cores 

Potential performance gain 
– Peak performance for tensor cores ~ 8x faster than FP32 
→ 8/3 ~ 2.7x performance gain over FP32 

– FP32 ~ 2x faster than FP64 
– DGEMM ~ 80% of runtime in DCA++  

→ Potential for overall performance gain over FP64: 2.9x

A = a1A1 + a2A2 B = b1B1 + b2B2

C = A × B

Matrix matrix multiply on Nvidia V100 
(Stan Tomov, Presentation at OLCF User Meeting,  

Oak Ridge, 2019)
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Questions to address

Am I guaranteed the stability, accuracy and convergence properties using lower 
precision?  

– (Quantum) Monte Carlo methods can afford reduced precision in most cases due to their statistical 
nature 

What memory and performance improvements can I expect when using lower 
precision?  

– Factor 1.5x - 2x with mixed single/double precision, and potentially more with Tensor Cores 
– Significant memory reductions 

What implementation challenges exist for application and enabling technologies 
developers?  

– Minimal due to heavily templated code 
– Challenge mostly in testing whether reduced precision error is within statistical Monte Carlo error


