Fast, scalable and accurate finite-element based *ab initio*calculations using mixed precision computing

Vikram Gavini

Department of Mechanical Engineering Department of Materials Science and Engineering University of Michigan, Ann Arbor

Collaborators: Sambit Das (U. Mich); Phani Motamarri (U. Mich); Bruno Turcksin (ORNL); Ying Wai Li (ORNL/LANL); Brent Leback (Nvidia)

Funding: DoE-BES, ARO, AFOSR, TRI, XSEDE, NERSC, ALCF, OLCF

SMC 2019

Impact of Density Functional Theory

Citations to seminal work of Walter Kohn (1964,1965)

14,162 MATERIALS SCIENCE MULTIDISCIPLINARY	11,498 PHYSICS APPLIED	3,885 CHEMISTRY MULTIDISCIPLINARY	1,346 CHEMISTRY INORGANIC NUCLEAR	1,05 MATHE INTERD APPLIC	4 MATIC DISCIP ATION	93 QUA SCIE TECH	5 NTUM NCE INOLOG	915 PHYSI MATHI	CS EMAT
13,863 PHYSICS CONDENSED MATTER	8,358 PHYSICS ATOMIC MOLECULAR CHEMICAL	2,640 NANOSCIENCE NANOTECHNOLOGY 1,497	735 ENGINEERING ELECTRICAL ELECTRONIC 659 COMPUTER SCIPLIN) AISTR ANIC	549 CRYST	ALL PHY	L 4 YSICS CLEA
13,529 CHEMISTRY PHYSICAL	4,399 PHYSICS MULTIDISCIPLINARY		653 MULTIDISCIPLINARY SCIENCES		513 ENER	13 NERGY FUELS		481 BIOCHEMIST MOLECULAR BIOLOGY	
		METALLURGY METALLURGICAL ENGINEERING	651 SPECTROSCOPY	513 MATERIAL SCIENCE COATINGS		B RIALS NCE INGS	LS ELECTROCH		осне

Data compiled from Web of Science

12 of the 100 most-cited papers in scientific literature pertain to DFT! (Nature **514**, 550 (2014))

~100 available DFT codes developed since 1980 14000 VASP QE 12000 CASTEP

Relationship to HPC

Data compiled from Web of Science

Courtesy: Anubhav Jain

Key Issues

- Lack of good parallel scalability of existing DFT codes $\mathbf{\mathbf{\dot{v}}}$
- Computational complexity of DFT calculations $(O(N^3))$ \diamond

Need for large scale DFT calculations

- Magnesium is the lightest structural material with high strength to weight ratio
 75% lighter than Steel and 30% lighter than Aluminum
- Every 10% reduction in the weight of a vehicle will result in 6-8% increase in fuel efficiency.
 - ✤ Important implications to fuel efficiency and reducing carbon footprint
- Low ductility key issue in the manufacturability of structural components. Main limitation in the adoptability of Mg and Mg alloys in automotive and aerospace sectors. (T.M. Pollock, Science 328, 986-987 (2010))

Courtesy: <u>https://www.audi-technology-portal.de/en/body</u> Current state of art: Hybrid Steel and Aluminum construction

S. Sandlöbes et al. Scientific Reports 7, 10458 (2017).

Technological challenge of low ductility in Mg

- Dislocations are energetically more favorable to reside on certain slip systems. (Energetics)
- Dislocation glide occurs after the applied shear stress is greater than the Perils barrier.

(Activation barrier)

More the number of slip systems where dislocatic can glide easily higher is the ductility.

4 slip planes in Face Centered Cubic Crystals → higher ductility

Kohn-Sham eigenvalue problem:

$$T_{s}(\Psi) = \frac{1}{2} \sum_{i} f_{i} \int |\nabla \psi_{i}(\mathbf{r})|^{2} d\mathbf{r} \quad E_{0}(\Psi) = T_{s}(\Psi) + E_{xc}(\rho) + E_{H}(\rho) + E_{ext}(\rho) + E_{zz}$$

Use finite-element basis for computing –

By changing the positioning of the nodes the spatial resolution of basis can be changed/adapted

$$\phi^{h}(\mathbf{r}) = \sum_{i} \phi_{i} N_{i}(\mathbf{r})$$

 $\psi_{k_{i}}, \phi_{i} \dots - \text{Nodal values}$
 $N_{i}(\mathbf{r}) - \text{Shape functions}$

Features of FE basis

- Systematic convergence
 - Element size
 - Polynomial order
- Adaptive refinement
- Complex geometries and boundary conditions
- Potential for excellent parallel scalability

Higher (polynomial) order FE basis

~1000x advantage by using higher-order FE basis !

Eigen-space computation: Chebyshev acceleration

(Zhou et al. J. Comput. Phys. 219 (2006); Motamarri et al. J. Comp. Phys. 253, 308-343 (2013))

Kohn-Sham eigenvalue problem: $\widetilde{\mathbf{H}}\widetilde{\psi}_k = \epsilon_k \widetilde{\psi}_k$ for k = 1, 2, ..., N (N ~ 1.1Ne/2)

- 1. Start with initial guess for electron density $\rho_{in}^h(\mathbf{r}) = \rho_0(\mathbf{r})$ and the initial wavefunctions
- 2. Compute the discrete Hamiltonian $ar{\mathbf{H}}$ using the input electron density ho_{in}^h
- 3. CF: Chebyshev filtering: $\widetilde{\Psi}_F = T_m(\bar{\mathbf{H}})\widetilde{\Psi}$
- 4. Orthonormalize CF basis: $\widetilde{\Psi}_F \ o \ \widetilde{\Psi}_F^o$
- 5. Rayleigh-Ritz procedure:
 - Compute projected Hamiltonian: $\mathbf{\hat{H}} = \widetilde{\mathbf{\Psi}}_{F}^{\mathrm{o}^{\dagger}} \widetilde{\mathbf{H}} \widetilde{\mathbf{\Psi}}_{F}^{\mathrm{o}}$

 - * Subspace rotation: $\widetilde{\Psi}^{\mathbf{R}} = \widetilde{\Psi}^{\mathrm{o}}_{\mathbf{F}} \mathbf{Q}$
- 6. Compute electron density $\rho_{out}^h(\mathbf{x}) = 2\sum_{i=1}^{N} f(\epsilon_i^h, \mu) |\psi_i^h(\mathbf{x})|^2$
- 7. If $||\rho_{out}^{h}(\mathbf{r}) \rho_{in}^{h}(\mathbf{r})|| < tol$, EXIT; else, compute new ρ_{in}^{h} using a mixing scheme and go to (2).

Case study: Mg 3x3x3 supercell with a vacancy. (1070 electrons)

60

56.134 s 50 50 40 40 30 -20 -2 nodes (84 CPUs) (12 GPUs)

Fig: Chebyshev filtering throughput on 2 Summit nodes using 12 GPUs (3 MPI tasks per GPU) for various block sizes. FP64 peak of 2 Summit nodes is 87.6 TFLOPS

Fig: 14.7x GPU speed up for Chebyshev filtering. CPU run used 2 Summit nodes with 42 MPI tasks per node while GPU run used 2 Summit nodes with 12 GPUs (3 MPI tasks per GPU)

Orthogonalization: Cholesky Gram-Schmidt

- ➤ Cholesky factorization of the overlap matrix: $\mathbf{S} = \widetilde{\Psi}_F^{\dagger} \widetilde{\Psi}_F = \mathbf{L} \mathbf{L}^{\dagger}$. $\mathcal{O}(MN^2)$
- ➢ Orthonormal basis construction: $\tilde{\Psi}_F^{o} = \tilde{\Psi}_F L^{-1\dagger}$. $O(MN^2)$

Mixed precision computation for Chol-GS

1.
$$\mathbf{S} = DP\{\mathbf{S}_d\} + SP\{\mathbf{S}_{od}\}$$

- 2. $\mathbf{S} = \mathbf{L} \mathbf{L}^{\dagger}$ in double precision.
- 3. Orthonormal basis construction:

$$\widetilde{\boldsymbol{\Psi}}_{F}^{\mathrm{o}} = \mathrm{DP}\left\{\widetilde{\boldsymbol{\Psi}}_{F} \mathbf{L}_{\mathbf{d}}^{-\mathbf{1}^{\dagger}}\right\} + \mathrm{SP}\left\{\widetilde{\boldsymbol{\Psi}}_{F} \mathbf{L}^{-\mathbf{1}^{\dagger}}_{\mathbf{od}}\right\}$$

17

Orthogonalization: Cholesky Gram-Schmidt

NERSC Cori CPU cluster benchmark

Performance improvement in CholGS due to mixed precision algorithm. Case study: Mg10x10x10 (39,990 electrons) and Mo13x13x13 (61,502 electrons)

Summit GPU cluster benchmark

Performance improvement in computation of **S** due to mixed precision algorithm. Case study: 61,640 electrons system using 1300 Summit nodes

Rayleigh-Ritz procedure

- Compute projected Hamiltonian: $\mathbf{\hat{H}} = \widetilde{\mathbf{\Psi}}_{F}^{o^{\dagger}} \widetilde{\mathbf{H}} \widetilde{\mathbf{\Psi}}_{F}^{o}$. $\mathcal{O}(MN^{2})$
- ✤ Diagonalization of $\hat{\mathbf{H}}$: $\hat{\mathbf{H}}\mathbf{Q} = \mathbf{Q}\mathbf{D}$. $\mathcal{O}(N^3)$
- Subspace rotation step: $\widetilde{\Psi}^{\mathbf{R}} = \widetilde{\Psi}^{\mathrm{o}}_{\mathbf{F}} \mathbf{Q}. \ \mathcal{O}(MN^2)$

Mixed precision computation for RR

- 2. Diagonalization of $\hat{\mathbf{H}}$: $\hat{\mathbf{H}}\mathbf{Q} = \mathbf{Q}\mathbf{D}$ in double precision.
- 3. Subspace rotation step: $\widetilde{\Psi}^{\mathrm{R}} = \mathrm{DP}\left[\widetilde{\Psi}^{\mathrm{o}}_{F}\mathbf{Q}_{\mathbf{d}}\right] + \mathrm{SP}\left[\widetilde{\Psi}^{\mathrm{o}}_{F}\mathbf{Q}_{\mathbf{d}}\right]$

Summit GPU cluster benchmark

Performance improvement in computation of Ĥdue to mixed precision algorithm. Case study: 61,640 electrons system using 1300 Summit nodes

(Motamarri et al. Comput. Phys. Commun. (2019))

Monovacancy in HCP Mg – periodic calculation ; ONCV pseudopotential Accuracy for all calculations <0.1mHa/atom (\sim 2meV/atom)

Time per SCF in Node-Hrs for various system sizes (NERSC Cori KNL)

ystem size	Q-Espresso (Ecut: 45 Ha)	DFT-FE (h_min: 0.46, p=4)	() 800 () () () () () () () () () () () () ()	
55 atoms N _e =2550)	0.1	0.3	009 iteration	
3 atoms _e =8630)	4.4	3.3	L 200 100	
7 atoms =20470)	123.5	21.6	all-time f	
atoms 39990)	-	103.4	≥ 0 100	00 20000 Number of Fle

Comparison with Quantum Espresso (Cori KNL)

Cu nanoparticles - non periodic calculation; ONCV pseudopotential

Accuracy for all calculations <0.1mHa/atom (~2meV/atom)

Time per SCF in Node-Hrs for various system sizes (NERSC Cori KNL)

System size	Q-Espresso (Ecut: 50 Ha)	DFT-FE (h_min: 0.4; p=4)
147 atoms (N _e =2793)	0.2	0.3
309 atoms (N _e =5871)	5.5	1.7
561 atoms (N _e =10569)	63.4	5.3
923 atoms (N _e =17537)	-	12.7

Technological challenge of low ductility in Mg

- Dislocations are energetically more favorable to reside on certain slip systems. (Energetics)
- Dislocation glide occurs after the applied shear stress is greater than the Perils barrier.

(Activation barrier)

More the number of slip systems where dislocations can glide easily higher is the ductility.

12 slip systems in Face Centered Cubic Crystals→ higher ductility

Performance Benchmarks – Strong Scaling/time to solution

Mg pyr II screw dislocation – 1,848 atoms (18,480 e⁻); 55.11 million FE DoFs

3 MPI tasks per GPU via MPS

Performance Benchmarks – Weak Scaling (Summit)

Total MPI tasks (3 MPI tasks per GPU; via MPS)

Large-scale dislocation systems performance: Time-to-solution & Sustained Performance (Summit)

Mg Pyr II dislocation – 6,1640 atoms (61,640 e⁻); 1300 Summit nodes (FP64 peak: 56.65 PFLOPS)

Mg Pyr II dislocation – 10,508 atoms (105,080 e⁻) ; 3800 Summit nodes (FP64 peak: 165.58 PFLOPS)

Step	Wall-time	FLOP count	PFLOPS (% of
	(sec)	(PFLOP)	FP64 peak)
Single SCF	142.7	6563.7	46.0 (27.8%)

Concluding remarks

- Computational framework
 - Higher-order FE basis
 - Spatial adaptivity
 - Spectral finite-elements w/ GLL quadratures
- Algorithms
 - Chebyshev filtering
 - Mixed precision ideas in Orthogonalization and Rayleigh Ritz
- Parallel implementation
 - Cell level matrix-matrix operations in Chebyshev filtering with single precision communication
 - Optimizations to reduce peak memory foot print in Orthogonalization and Rayleigh Ritz steps
- Fast and accurate large-scale DFT calculations
 - Significant outperformance of some widely used plane-wave codes in both computational efficiency and minimum time-to-solution
 - ✤ ~20x speedup using GPUs on a node-to-node comparison
 - ✤ Sustained performance of 46 PFOLPS in DFT

THANK YOU!

