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Impact of Density Functional Theory

Citations to seminal work of Walter Kohn (1964,1965)

Data compiled from Web of Science

12 of the 100 most-cited papers in scientific literature pertain to DFT! 
(Nature 514, 550 (2014))
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DFT codes

~100 available DFT codes developed since 1980

Data compiled from Web of Science

Relationship to HPC

Courtesy: Anubhav Jain

Key Issues

v Lack of good parallel scalability of existing DFT codes
v Computational complexity of DFT calculations (O(N^3)) 
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Need for large scale DFT calculations
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Chemical properties of nanoparticles

Defects in Materials
Rocksalt phase formation during Litihiation of Magnetite 

He et. al, Nature Comm, 2016

Edge dislocation: 
Iyer et al. J. Mech, Phys. Solids (2015)

Screw dislocation: 
Das & Gavini J. Mech, Phys. Solids (2017)

Biological systems
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Technological challenge of low ductility in Mg

Ø Magnesium is the lightest structural material with high strength to weight ratio
v 75% lighter than Steel and 30% lighter than Aluminum 

Ø Every 10% reduction in the weight of a vehicle will result in 6-8% increase in 
fuel efficiency.
v Important implications to fuel efficiency and reducing carbon footprint

Ø Low ductility key issue in the manufacturability of structural components. Main 
limitation in the adoptability of Mg and Mg alloys in automotive and aerospace 
sectors. (T.M. Pollock, Science 328, 986-987 (2010)) 
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Courtesy: https://www.audi-technology-portal.de/en/body
Current state of art: Hybrid Steel and Aluminum construction S. Sandlöbes et al. Scientific Reports 7, 10458 (2017).

5

https://www.audi-technology-portal.de/en/body


Technological challenge of low ductility in Mg

4 slip planes in Face Centered Cubic 
Crystalsà higher ductility

v Dislocations are energetically more favorable to 
reside on certain slip systems. (Energetics)

v Dislocation glide occurs after the applied shear 
stress is greater than the Perils barrier. 

(Activation barrier)

v More the number of slip systems where dislocations 
can glide easily higher is the ductility.
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Basal Prism II

Prism I Pyramidal II Pyramidal I
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Kohn-Sham eigenvalue problem:

Orbital occupancy:
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Density Functional Theory

Self consistent iteration
(Kohn-Sham map)
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Ø Use finite-element basis for computing –
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DFT – Finite Element discretization
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By changing the positioning of the 
nodes the spatial resolution of 
basis can be changed/adapted

Features of FE basis

Ø Systematic convergence
v Element size
v Polynomial order

Ø Adaptive refinement
Ø Complex geometries and boundary 

conditions
Ø Potential for excellent parallel scalability
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Higher (polynomial) order FE basis

~1000x advantage by using higher-order FE basis !

I. Cu nanoparticle 
55 atoms

II. Mo periodic 
supercell w/ vacancy

53 atoms
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Ø Error Analysis:

Ø Optimal FE mesh: 

SMC 2019

Spatial adaptivity of the FE basis
(Motamarri et al. J Comput Phys. (2013); Motamarri el al. Comput. Phys. Commun. (2019) )

System Type
pyr II dislocation

DoFs
Uniform Mesh

DoFs for 
Adaptive Mesh

1848 atom Mg 347,206,614 55,112,161

6164 atom Mg 892,047,315 179,034,231 10



Eigen-space computation: Chebyshev acceleration
(Zhou et al. J. Comput. Phys. 219 (2006); Motamarri et al. J. Comp. Phys. 253, 308-343 (2013)) 

Kohn-Sham eigenvalue problem:                                 for  k = 1,2,…N   (N ~ 1.1Ne/2)

SMC 2019

Unwanted SpectrumWanted Spectrum

Unwanted SpectrumWanted Spectrum

Chebyshev Filtering: 
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Numerical algorithm

1. Start with initial guess for electron density and the initial 
wavefunctions

2. Compute the discrete Hamiltonian       using the input electron density

3. CF: Chebyshev filtering:

4. Orthonormalize CF basis: 

5. Rayleigh-Ritz procedure: 
v Compute projected Hamiltonian: 

v Diagonalize

v Subspace rotation: 

6. Compute electron density 

7. If  , EXIT; else, compute new using a mixing 
scheme and go to (2).
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Chebyshev Filtering

DoF

DoF 1 DoF 2 DoF

DoF 1 DoF 2

: Number of FE cells

FE Cell
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Chebyshev Filtering

Strided Batched xGEMM
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DoF 1 DoF 2

Atomic operations 
to avoid race 

conditions in addition
DoF

Assembly across processor 
boundaries: Communication

in FP32

Repeat for 

Chebyshev Filtering
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Performance of Chebyshev filtering (Summit)
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Case study: Mg 3x3x3 supercell with a vacancy. (1070 electrons)

Fig: Chebyshev filtering throughput on 2 Summit nodes 
using 12 GPUs (3 MPI tasks per GPU) for various block 
sizes. FP64 peak of 2 Summit nodes is 87.6  TFLOPS

Fig:  14.7x GPU speed up for Chebyshev filtering. CPU run 
used 2 Summit nodes with 42 MPI tasks per node while 
GPU run used 2 Summit nodes with 12 GPUs (3 MPI tasks 
per GPU)
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Orthogonalization: Cholesky Gram-Schmidt

Ø Cholesky factorization of the overlap matrix:

Ø Orthonormal basis construction:

SMC 2019

Blocked approach to reduce peak memory

Copy block to CPU
(if computation

performed on GPU)
MPI_Allreduce

Fill ScaLAPACK
parallelized S matrix

Mixed precision computation for Chol-GS

1.

2. in double precision. 

3. Orthonormal basis construction: 
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Orthogonalization: Cholesky Gram-Schmidt

Performance improvement in computation of S
due to mixed precision algorithm. Case study: 
61,640 electrons system using 1300 Summit 

nodes

NERSC Cori CPU cluster benchmark Summit GPU cluster benchmark

Performance improvement in CholGS due to 
mixed precision algorithm. Case study: 

Mg10x10x10 (39,990 electrons) and 
Mo13x13x13 (61,502 electrons)  
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Rayleigh-Ritz procedure

v Compute projected Hamiltonian:

v Diagonalization of

v Subspace rotation step: 

Noc Nfr

1. Compute projected Hamiltonian:

Mixed precision computation for RR

SMC 2019
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Rayleigh-Ritz procedure

Performance improvement in computation of due to 
mixed precision algorithm. Case study: 61,640 

electrons system using 1300 Summit nodes

Summit GPU cluster benchmark

2. Diagonalization of in double precision. 

3. Subspace rotation step:

SMC 2019
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Comparison with Quantum Espresso (Cori KNL)
(Motamarri et al. Comput. Phys. Commun. (2019))

Monovacancy in HCP Mg – periodic calculation ; ONCV pseudopotential 
Accuracy for all calculations <0.1mHa/atom (~2meV/atom)

System size Q-Espresso 
(Ecut: 45 Ha)

DFT-FE 
(h_min: 0.46, p=4)

255 atoms 
(Ne =2550)

0.1 0.3

863 atoms 
(Ne =8630)

4.4 3.3

2047 atoms 
(Ne =20470)

123.5 21.6

3999 atoms 
(Ne =39990)

- 103.4
0 10000 20000 30000 40000

Number of Electrons

0

200

400

600

800

W
al

l-t
im

e 
pe

r S
CF

 it
er

at
io

n 
(s

ec
) DFT-FE

QUANTUM ESPRESSO

Time per SCF in Node-Hrs for various system sizes
(NERSC Cori KNL)

21



SMC 2019

Comparison with Quantum Espresso (Cori KNL)

Cu nanoparticles – non periodic calculation; ONCV pseudopotential 

Accuracy for all calculations <0.1mHa/atom (~2meV/atom) 

System size Q-Espresso 
(Ecut: 50 Ha)

DFT-FE 
(h_min: 0.4; p=4)

147 atoms 
(Ne =2793)

0.2 0.3

309 atoms 
(Ne =5871)

5.5 1.7

561 atoms 
(Ne =10569)

63.4 5.3

923 atoms 
(Ne =17537)

- 12.7

Time per SCF in Node-Hrs for various system sizes
(NERSC Cori KNL)
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Technological challenge of low ductility in Mg

12 slip systems in Face Centered 
Cubic Crystalsà higher ductility

Prism I

SMC 2019

Basal Prism II

Pyramidal II Pyramidal I

v Dislocations are energetically more favorable to 
reside on certain slip systems. (Energetics)

v Dislocation glide occurs after the applied shear 
stress is greater than the Perils barrier. 

(Activation barrier)

v More the number of slip systems where dislocations 
can glide easily higher is the ductility. 23



Mg Pyramidal dislocation systems 

728 Mg atoms

1848 Mg atoms

6164 Mg atoms

Pyramidal I and II dislocation systems of various sizes

10,508 Mg atoms
SMC 2019
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Wall-time on 1260 tasks: 97.6 sec
Wall-time on 20,160 tasks: 13.99 sec
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Performance Benchmarks – Strong Scaling/time to solution
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Wall-time on 2048 tasks: 1511 sec
Wall-time on 65,536 tasks: 104 sec

Mg pyr II screw dislocation – 1,848 atoms (18,480 e-); 55.11 million FE DoFs

Theta Summit GPUs

3 MPI tasks per GPU via MPS
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Performance Benchmarks – Weak Scaling (Summit)
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Total MPI tasks (3 MPI tasks per GPU; via MPS )

180 576 3294 12744

38250

Computational Complexity

Chebyshev filtering: O(MN)

Orthonormalization: O(MN2)

Rayleigh Ritz procedure: O(MN2)

Onset of cubic scaling significantly delayed !
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Large-scale dislocation systems performance: 
Time-to-solution & Sustained Performance (Summit)

Mg Pyr II dislocation – 6,1640 atoms (61,640 e-); 1300 Summit nodes (FP64 peak: 56.65 PFLOPS)

Procedure Wall-time 
(sec)

FLOP count 
(PFOLPS)

PFLOPS 
(% of FP64 peak)

Initialization 981 - -

Ground-
state

7377 123174 16.7 (29.5%)

Total 8358 123174 14.7 (26.0%)

Mg Pyr II dislocation – 10,508 atoms (105,080 e-) ; 3800 Summit nodes (FP64 peak: 165.58 PFLOPS)

Step Wall-time 
(sec)

FLOP count 
(PFLOP)

PFLOPS (% of 
FP64 peak)

Single SCF 142.7 6563.7 46.0 (27.8%)
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Concluding remarks

Ø Computational framework
v Higher-order FE basis
v Spatial adaptivity
v Spectral finite-elements w/ GLL quadratures

Ø Algorithms
v Chebyshev filtering
v Mixed precision ideas in Orthogonalization and Rayleigh Ritz

Ø Parallel implementation
v Cell level matrix-matrix operations in Chebyshev filtering with single precision 

communication
v Optimizations to reduce peak memory foot print in Orthogonalization and 

Rayleigh Ritz steps

Ø Fast and accurate large-scale DFT calculations
v Significant outperformance of some widely used plane-wave codes in both 

computational efficiency and minimum time-to-solution
v ~20x speedup using GPUs on a node-to-node comparison
v Sustained performance of 46 PFOLPS in DFT
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THANK YOU!
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