Fast, scalable and accurate finite-element based *ab initio* **calculations using mixed precision computing**

Vikram Gavini

Department of Mechanical Engineering Department of Materials Science and Engineering University of Michigan, Ann Arbor

Collaborators: Sambit Das (U. Mich); Phani Motamarri (U. Mich); Bruno Turcksin (ORNL); Ying Wai Li (ORNL/LANL); Brent Leback (Nvidia)

Funding: DoE-BES, ARO, AFOSR, TRI, XSEDE, NERSC, ALCF, OLCF

SMC 2019

Impact of Density Functional Theory

Citations to seminal work of Walter Kohn (1964,1965)

Data compiled from Web of Science

12 of the 100 most-cited papers in scientific literature pertain to DFT! (Nature **514**, 550 (2014))

Data compiled from Web of Science

Courtesy: Anubhav Jain

Key Issues

- v Lack of good parallel scalability of existing DFT codes
- Computational complexity of DFT calculations $(O(N^3))$

Need for large scale DFT calculations

- \triangleright Magnesium is the lightest structural material with high strength to weight ratio * 75% lighter than Steel and 30% lighter than Aluminum
- \triangleright Every 10% reduction in the weight of a vehicle will result in 6-8% increase in fuel efficiency.
	- Important implications to fuel efficiency and reducing carbon footprint
- \triangleright Low ductility key issue in the manufacturability of structural components. Main limitation in the adoptability of Mg and Mg alloys in automotive and aerospace sectors. (T.M. Pollock, *Science* **328**, 986-987 (2010))

Courte[sy: https://www.audi-technology-portal.de/en/bo](https://www.audi-technology-portal.de/en/body)dy Current state of art: Hybrid Steel and Aluminum construction S. Sandlöbes et al. Scientific Reports 7, 10458 (2017).

Technological challenge of low ductility in Mg

- Dislocations are energetically more favorable to reside on certain slip systems. (**Energetics**)
- \div Dislocation glide occurs after the applied shear stress is greater than the Perils barrier.

(**Activation barrier**)

More the number of slip systems where dislocation can glide easily higher is the ductility.

4 slip planes in Face Centered Cubic Crystals \rightarrow higher ductility

Kohn-Sham eigenvalue problem:

$$
\left(-\frac{1}{2}\nabla^2 + V_{eff}\right)\psi_i = \epsilon_i\psi_i
$$
\nSelf consistent iteration
\n
$$
\rho = \sum_i f_i |\psi_i|^2, \qquad V_{eff}(\mathbf{r}) = V_H(\rho(\mathbf{r})) + V_{xc}(\rho(\mathbf{r})) + V_{ext}(\mathbf{R})
$$

$$
T_s(\Psi) = \frac{1}{2} \sum_i f_i \int |\nabla \psi_i(\mathbf{r})|^2 d\mathbf{r} \quad E_0(\Psi) = T_s(\Psi) + E_{xc}(\rho) + E_H(\rho) + E_{ext}(\rho) + E_{zz}
$$

 \triangleright Use finite-element basis for computing -

By changing the positioning of the nodes the spatial resolution of basis can be changed/adapted

$$
\phi^h(\mathbf{r}) = \sum_i \phi_i N_i(\mathbf{r})
$$

$$
\psi_{k_i}, \phi_i \dots
$$
 Nodal values

$$
N_i(\mathbf{r})
$$
–Shape functions

Features of FE basis

- Ø Systematic convergence
	- v Element size
	- v Polynomial order
- \triangleright Adaptive refinement
- \triangleright Complex geometries and boundary conditions
- \triangleright Potential for excellent parallel scalability

Higher (polynomial) order FE basis

~1000x advantage by using higher-order FE basis !

Eigen-space computation: Chebyshev acceleration

(Zhou et al. J. Comput. Phys. 219 (2006); Motamarri et al. J. Comp. Phys. 253, 308-343 (2013))

Kohn-Sham eigenvalue problem: $\widetilde{H}\widetilde{\psi}_k = \epsilon_k \widetilde{\psi}_k$ for $k = 1, 2, ...N$ (N ~ 1.1N_e/2)

- 1. Start with initial guess for electron density $\rho_{in}^h(\mathbf{r}) = \rho_0(\mathbf{r})$ and the initial wavefunctions
- 2. Compute the discrete Hamiltonian $\bar{\mathbf{H}}$ using the input electron density ρ_{in}^h
- **3. CF:** Chebyshev filtering: $\widetilde{\mathbf{\Psi}}_F = T_m(\bar{\mathbf{H}})\widetilde{\mathbf{\Psi}}$
- **4. Orthonormalize** CF basis: $\widetilde{\Psi}_F \rightarrow \widetilde{\Psi}_F^o$
- **5. Rayleigh-Ritz procedure**:
	- Compute projected Hamiltonian: $\hat{\mathbf{H}} = \widetilde{\mathbf{\Psi}}_{F}^{\text{o}^{\dagger}}\widetilde{\mathbf{H}}\widetilde{\mathbf{\Psi}}_{F}^{\text{o}}$
	- $\boldsymbol{\ast}$ Diagonalize $\hat{\mathbf{H}}$: $\hat{\mathbf{H}}\mathbf{Q} = \mathbf{Q}\mathbf{D}$
	- ***** Subspace rotation: $\widetilde{\Psi}^{\mathbf{R}} = \widetilde{\Psi}_{\mathbf{F}}^{\mathrm{o}} \mathbf{Q}$
- 6. Compute electron density $\rho_{\text{out}}^h(\mathbf{x}) = 2 \sum_{i=1}^N f(\epsilon_i^h, \mu) |\psi_i^h(\mathbf{x})|^2$
- 7. If $||\rho_{out}^h(\mathbf{r}) \rho_{in}^h(\mathbf{r})|| < tol$, EXIT; else, compute new ρ_{in}^h using a mixing scheme and go to (2).

Performance of Chebyshev filtering (Summit)

Case study: Mg 3x3x3 supercell with a vacancy. (1070 electrons)

Fig: Chebyshev filtering throughput on 2 Summit nodes using 12 GPUs (3 MPI tasks per GPU) for various block sizes. FP64 peak of 2 Summit nodes is 87.6 TFLOPS

Fig: 14.7x GPU speed up for Chebyshev filtering. CPU run used 2 Summit nodes with 42 MPI tasks per node while GPU run used 2 Summit nodes with 12 GPUs (3 MPI tasks per GPU)

Orthogonalization: Cholesky Gram-Schmidt

- \triangleright Cholesky factorization of the overlap matrix: $\mathbf{S} = \widetilde{\mathbf{\Psi}}_F^\dagger \widetilde{\mathbf{\Psi}}_F = \mathbf{L}\mathbf{L}^\dagger$. $\mathcal{O}(MN^2)$
- $\widetilde{\Psi}_{F}^{\circ} = \widetilde{\Psi}_{F} L^{-1^{\dagger}}$. $\mathcal{O}(MN^{2})$ \triangleright Orthonormal basis construction:

Mixed precision computation for Chol-GS

- 1. $S = DP {S_d} + SP {S_{od}}$
- 2. $S = LL^{\dagger}$ in double precision.
- 3. Orthonormal basis construction:

$$
\widetilde{\mathbf \Psi}^{\rm o}_F = {\rm DP} \left\{ \widetilde{\mathbf \Psi}_F {\mathbf L}_{\mathbf d}^{-1} \right\} + {\rm SP} \left\{ \widetilde{\mathbf \Psi}_F {\mathbf L}^{-1} \hspace{-2pt}\stackrel{\dagger}{\text{od}} \right\}
$$

17

Orthogonalization: Cholesky Gram-Schmidt

NERSC Cori CPU cluster benchmark Summit GPU cluster benchmark

Performance improvement in CholGS due to mixed precision algorithm. Case study: Mg10x10x10 (39,990 electrons) and Mo13x13x13 (61,502 electrons)

Performance improvement in computation of **S** due to mixed precision algorithm. Case study: 61,640 electrons system using 1300 Summit nodes

Rayleigh-Ritz procedure

- ❖ Compute projected Hamiltonian: $\hat{\mathbf{H}} = \widetilde{\mathbf{\Psi}}_F^{\mathrm{o}^\dagger} \widetilde{\mathbf{H}} \widetilde{\mathbf{\Psi}}_F^{\mathrm{o}}.$ $\mathcal{O}(MN^2)$
- ❖ Diagonalization of \hat{H} : $\hat{H}Q = QD$. $\mathcal{O}(N^3)$
- ❖ Subspace rotation step: $\widetilde{\Psi}^{\mathbf{R}} = \widetilde{\Psi}_{\mathbf{F}}^{\circ} \mathbf{Q}$. $\mathcal{O}(MN^2)$

Mixed precision computation for RR

- 2. Diagonalization of \hat{H} : $\hat{H}Q = QD$ in double precision.
- 3. Subspace rotation step: $\widetilde{\mathbf \Psi}^\text{R} = \text{DP}\left[\widetilde{\mathbf \Psi}^\text{o}_F \mathbf Q_\textbf{d}\right] + \text{SP}\left[\widetilde{\mathbf \Psi}^\text{o}_F \mathbf Q_\textbf{od}\right]$

Summit GPU cluster benchmark

Performance improvement in computation of \hat{H} due to mixed precision algorithm. Case study: 61,640 electrons system using 1300 Summit nodes

(Motamarri et al. Comput. Phys. Commun. (2019))

Monovacancy in HCP Mg – periodic calculation ; ONCV pseudopotential Accuracy for all calculations $<$ 0.1mHa/atom (\sim 2meV/atom)

Time per SCF in Node-Hrs for various system sizes (NERSC Cori KNL)

Comparison with Quantum Espresso (Cori KNL)

Cu nanoparticles – non periodic calculation; ONCV pseudopotential

Accuracy for all calculations $<$ 0.1mHa/atom (\sim 2meV/atom)

Time per SCF in Node-Hrs for various system sizes (NERSC Cori KNL)

Technological challenge of low ductility in Mg

- Dislocations are energetically more favorable to reside on certain slip systems. (**Energetics**)
- \div Dislocation glide occurs after the applied shear stress is greater than the Perils barrier.

(**Activation barrier**)

More the number of slip systems where dislocations can glide easily higher is the ductility.

12 slip systems in Face Centered Cubic Crystals \rightarrow higher ductility

Performance Benchmarks – Strong Scaling/time to solution

Mg pyr II screw dislocation – 1,848 atoms (18,480 e-); 55.11 million FE DoFs

3 MPI tasks per GPU via MPS

Performance Benchmarks – Weak Scaling (Summit)

Total MPI tasks (3 MPI tasks per GPU; via MPS)

Large-scale dislocation systems performance: Time-to-solution & Sustained Performance (Summit)

Mg Pyr II dislocation - 6,1640 atoms (61,640 e-); 1300 Summit nodes (FP64 peak: 56.65 PFLOPS)

Mg Pyr II dislocation – 10,508 atoms (105,080 e-) ; 3800 Summit nodes (FP64 peak: 165.58 PFLOPS)

Concluding remarks

- Ø Computational framework
	- v Higher-order FE basis
	- v Spatial adaptivity
	- v Spectral finite-elements w/ GLL quadratures
- \triangleright Algorithms
	- ***** Chebyshev filtering
	- * Mixed precision ideas in Orthogonalization and Rayleigh Ritz
- \triangleright Parallel implementation
	- v Cell level matrix-matrix operations in Chebyshev filtering with single precision communication
	- * Optimizations to reduce peak memory foot print in Orthogonalization and Rayleigh Ritz steps
- \triangleright Fast and accurate large-scale DFT calculations
	- Significant outperformance of some widely used plane-wave codes in both computational efficiency and minimum time-to-solution
	- \sim ~20x speedup using GPUs on a node-to-node comparison
	- ^v Sustained performance of 46 PFOLPS in DFT 28

THANK YOU!

